The effect of sequence on the conformational stability of a model heteropolymer in explicit water.

نویسندگان

  • Bryan A Patel
  • Pablo G Debenedetti
  • Frank H Stillinger
  • Peter J Rossky
چکیده

We investigate the properties of a two-dimensional lattice heteropolymer model for a protein in which water is explicitly represented. The model protein distinguishes between hydrophobic and polar monomers through the effect of the hydrophobic monomers on the entropy and enthalpy of the hydrogen bonding of solvation shell water molecules. As experimentally observed, model heteropolymer sequences fold into stable native states characterized by a hydrophobic core to avoid unfavorable interactions with the solvent. These native states undergo cold, pressure, and thermal denaturation into distinct configurations for each type of unfolding transition. However, the heteropolymer sequence is an important element, since not all sequences will fold into stable native states at positive pressures. Simulation of a large collection of sequences indicates that these fall into two general groups, those exhibiting highly stable native structures and those that do not. Statistical analysis of important patterns in sequences shows a strong tendency for observing long blocks of hydrophobic or polar monomers in the most stable sequences. Statistical analysis also shows that alternation of hydrophobic and polar monomers appears infrequently among the most stable sequences. These observations are not absolute design rules and, in practice, these are not sufficient to rationally design very stable heteropolymers. We also study the effect of mutations on improving the stability of the model proteins, and demonstrate that it is possible to obtain a very stable heteropolymer from directed evolution of an initially unstable heteropolymer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid-DFT study and NBO interpretations of the conformational behavior of 1,2-dihalodisilanes

Hybrid-density functional theory (B3LYP/Def2-TZVPP) based method and NBOinterpretation were used to investigate the conformational behavior of 1,2-dihalodisilanes[halo=F (1), Cl (2), Br (3), I (4)]. The B3LYP/Def2-TZVPP results showed that the anticonformations of compounds 1-4 are more stable than their corresponding gaucheconformations. The stability of the anti conformation compared to the g...

متن کامل

Protein Stability, Folding, Disaggregation and Etiology of Conformational Malfunctions

Estimation of protein stability is important for many reasons: first providing an understanding of the basic thermodynamics of the process of folding, protein engineering, and protein stability plays important role in biotechnology especially in food and protein drug design. Today, proteins are used in many branches, including industrial processes, pharmaceutical industry, and medical fields. A...

متن کامل

Solvent effect investigation on the Conformational behaviors of 1-fluoro-N, N-dimethylmethanamine and analogs containing P, As atoms

NBO analysis, hybrid density functional theory (B3LYP/6-311+G**) based methods were used to study the anomeric effects (AE), Stereoelectronic interactions, dipole-dipole interactions on the conformational properties of 1-Fluoro-N, N-dimethylmethanamine (1) and phosphorus (2) and arsenic (3) analogues.Moreover, relationships between stability of the anti-conformations of 1-Fluoro-N, N-dimethylme...

متن کامل

Theoretical Analysis on the Conformational Features of the HCO—Gly—L—Leu—NH2 Protected Dipeptide Motif: Ab initio and DFT Exploratory

For better understanding of conformational stability of the dipeptide model HCO—Gly—L—Leu—NH2,ab initio and DFT computations at HF/6-31G(4 6-311++G(d,p) and B3LYP/6-31G(d) levels oftheory were carried out. Geometry optimization of the dipeptide within the leucine (Leu) side chainangles (x2 ,x2) resulted in three stable conformations as followings: anti-anti, the most stable one,(Xi = 180°, x2 =...

متن کامل

THE EFFECT OF COSMIONS ON THE STABILITY OF MAIN SEQUENCE STELLAR CORES

We have studied the effect of hypothetical Cosmions on the core stability of main sequence stars (of populations I and II). Cosmions, with a mass of 4-10 Gev/c2 and a scattering cross section with nucleons of approximately 10-36 cm2 could prevail in transporting heat in the stellar cores. Raby [17] showed the existence of a local thermal instability caused by the presence of Cosmions in the sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 128 17  شماره 

صفحات  -

تاریخ انتشار 2008